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The problem of completeness of a system of elementary solutions in the space 
of biharmonic functions with finite energy is investigated. The problem arises 
during the study of infinite systems of linear algebraic equations in the asymp- 
totic theory of plates. Actually a more general theory is developed here, includ- 
ing e. g. orthotropic and transversely inhomogeneous plates. The problem of ex- 
istence of elementary solutions is solved at the same time. The results concern- 

ing the completeness obtained here are independent of the form of the boundary 
conditions at the end and can, consequently, be applied to a fairly wide class of 
elliptic boundary value problems which, in particular, appear in the theory of 
thick plates. 

Before the problems of completeness are discussed, we study the problem of 
traces for the solution of a certain elliptic equation in a semi-cylinder. The 
necessary and sufficient conditions are formulated for the boundary valueswhich 
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ensure that the solution belongs to the energy space. 
As we know, the stress-strain state of a plate can be separated into the internal 

state and the boundary layer [l - 41. Construction of the boundary layer involves 
consecutive solutions of the plane problems of the theory of elasticity in a semi- 
strip. Papkovich [5] and others reduce the boundary value problem of the theory 

of elasticity in the semi-strip s ) 0. ) v 1 < 1 to finding a biharmonic Airy func- 

tion . which is sought in the form 

U.= 2 C,cp, (Y) eiokx 
Im mk>o 

where qk are the Papkovich functions [5, 61, crk denote the eigenvalues of a cer- 
tain nonselfconjugate boundary value problem and CI, are unknown COrMantS. 

In this connection the author of [6] poses the problem of representing a pair of 
functions ,i and fi in the form 

m 

2 ‘,‘,(P, = fl, 2 ChQkqk = f, 
k=l k=l 

(0.1) 

where Pk and Qk are differential operators determined by the boundary condi- 
tions at x = 0. Certain sufficient conditions for the uniform convergence of the 
series (0.1) are given in [7, 81 for the cases when the coefficients Ck can be 
obtained in the explicit form using the generalized conditions of orthogonality. 

Vorovich has shown in [9] that the present problem is related to the problem 

of n-tuple completeness discussed by Keldysh in [lo], and suggested a novel 
method (realized in [ll]) of investigating the expansions (0.1) based on direct 

study of the initial boundary value problem. In [ll] the coefficients Ck are . 
uniquely defined by the boundary values of the biharmonic function and its deri- 

vatives. Thus the completeness and the basic properties of the elementary solu- 
tions are both found to be closely connected with the differential properties of 

the biharmonic function in a region with corners (the problem of traces). 
Amongst the recent investigations we note [12] where a theorem was announ- 

ced concerning n-tuple completeness in the space L, of a part of the eigenvec- 
tars and adjoint vectors belonging to the operator bundle generated by a certain 

boundary problem for an elliptic equation in a semi-strip. 
The problem of traces for a two-dimensional region with a piecewise smooth 

boundary was discussed in [13], while [14] dealt with the differential properties 
of solutions of the general elliptic equations in regions with conical and corner 

points. Certain new results pertaining to the biharmonic equation are given in 
[ 151. and [16 - 181 deal with the behavior of the solutions of the problems of the 
theory of elasticity near the singular points on the boundary. 

1. Let 52 = S x [O, oo) be an n-dimensional semi-cylinder of cross section S 

and the axis x, = x, r its side surface, y the boundary of S:and So the end surface 

at x = 0. 
We consider the following boundary value problem in &! : 

A% = 0 (1.1) 

(1.2) 
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(1.3) 

The conditions (1.3) may be replaced by some other boundary conditions, e. g. : 

u Is0 = uo, 
au 
FG ,yo - - up, ujx--rJo = 0 (1.4) 

It is convenient to consider the problem(l.l)-(1.3)(or (1.1),(1.2) and (1.4)) as a 
particular case of the following abstract boundary value problem on a semi-axis : 

u(4) (2) - 2Fd2) (5) + Vu (5) = 0, ?P) = d%/kP4 (1.5) 

U (0) = Ug, z&Q (0) = z@), U (cc) = 0 (1.6) 

or instead of (1.6), 

U (0) = Ug, U(i) (0) = Uo(i) U (oo) = 0 7 (1.7) 

Here U(Z) is a function of the variable x in a certain Hilbert space H; V and F are 
unbounded, positive definite operators, V-1 and p1 are completely continuous. More- 
over we shall assume that the operator u = FV-‘/t is bounded (the fractional powers 
of the operators are defined in [ 191) . 

When used in connection with the problem (1.1) - (1.3). the operators V and F are 

denoted by the zero subscript, so that 

V,u = Ao2u, u ly = 0 = ; ly (1.8) 

i 

n-1 

F,u = -Aou, u Iy = 0 A0 = 2 -$- . 
k 

k=l i 

We shall use L, (S) as H . We define the domains of definition D (V,) and D (F,) 
of the operators V. and F, as the closure of the set M of functions which are smooth 

and bounded in S , on the Sobolev spaces w2(*) (s) and ws,c2) (8) , respectively. 

2. Summary of the basic definitions. 

1’. H,, is a Hilbert space obtained by the closure of the set Ml of finite vec- 
tor functions such that u (z), u(i)(z), U@)(S), VU and Fu(l) are continuous in z over 
H on the metric 

11~ ll”Ho = 5 [II ~(2) (z)(j& + 2 /I F"u(') (z) ]];I + (IV"'*u (z) lb1 ds (2.1) 
0 

where F’lt and V’:s are positive roots of the operators F and V , respectively. 

Ho’ is a Hilbert space obtained by the closure of the set Ml on the metric 

11 u I&; = T [II z# (4 ll”H + (I v”’ u (4 IlkI dx (2.2) 
0 

H" is the scale of the Hilbert spaces [20] obtained by the closure of the intersection 
of all D (V”) (n = 1, 2, . . -) on the metric 

II u l&a = II V”u lb (2.3) 

When a < 0 , Ha represents certain spaces of generalized functions. Obviously when 
a > p, then Ha c HP, the imbedding is completely continuous and 
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II u IIH” > (Jl l/u lIHP’ 0 = cp (V) (2.4) 

where iI (v> is the first eigenvalue of the operator v. 

C (Ha) is a space of vector functions belonging to H”, strictly continuous on the ray 

2 E [0, cm) and vanishing as 2 --t 00. 
2”. We define the vector function utn) E C (Ha) as the n th (continuous) gene- 

ralized derivative of the vector function u E H,, provided that a sequence 1~~ E MI 
exists such, that 

11 Uk - u IJHo ---, 0, ,,“rym II $?’ (XI - @)(a9 lip - 0 
3”. We say that the vector function u E Ho is a generalized solution of the 

problem (1.5), (1.6) if it is such, that u (0) = u. and if it satisfies the identity 

(n, NH0 = - ($” (($7 $@)H = 1 (Q) (2.5) 

for any vector function I# E H,,,*(O) = 0. H ere ~~(2) must be such, that the func- 
tional 1 ($) is continuous in H,. Below we show that for this requirement it is necessary 
and sufficient that uOc2) E H-‘/g. 

We say that the vector function u is a generalized solution of the problem (1.5), (1.7) 
if it is such that u E: H,, u (0) -= u,,, ~(1) (0) = ~~(1) and 

(u, ‘$)Ho = 0, $ E Ho, 9 (0) = d’(l) (0) = 0 (2.6) 

for all $ E H, such that I$ (0) = 0 = $(I) (0). 
4”. We call the elementary solution of (1.5) any of its (generalized) solutions 

of the form ,.P-1 
q.(z)= ei"kT - 

I 

,$-2 

@ _I)! VOk + - Q--2)! (Plk + * *. + (PP-lh. 
I 

(2.7) 

P> 1, lm3,>0, 5; = - /A,; 

where pk are the eigenvalues and qok are the generalized eigenvectors (see [21]) of the 

operator bundle r(p), i. e. 

r (p)‘p E% (/_L21 + 2yF + V)ql = 0 

and qsk are the ad joint vectors defined by the relations 

3. Several results follow concerning the properties of continuity of the elements 
belonging to Ho’. Certain of these results are already known @2] and are given without 

proof. 
Lemma 3.1. Let 1c E Ho’, then U(Z) E C(H3/*), U(~)(S) E C (F/a) and the 

following inequalities hold for 5 E [O, 00): 

11’ (d IIfj% G C II u \\Hb’ 11 ‘(l) (‘) \]&/a 6 ’ // u 11, ’ (3.1) 
0 

Lemma 3.2. Let the operator u = FV-‘iz be bounded, i. e. the following ine- 

quality hold : 
II lJu II G N II u/I (3.2) 

Then the norms defined by the relations (2.1) and (2.2) are equivalent. 
Proof. The equivalence of the norms of H, and H,,’ means that the following 
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inequalities hold : 
ml II u II& < II u II& d mz II JJ IIf&, (3.3) 

It is sufficient to prove the right-hand side inequality, as the left-hand side obviously 

holds when ml = 1. 

First we note that using the Heintz theorem [19] we have from the inequality (3.2) : 

D (V”) = D (F’“) 

II F2=v II 4 N2’ II Vav II, v=V’u ‘I (0 < a < ‘M (3.4) 

Let us consider the integral 

m 

s 11 F’%L(~) (I) llH2 dx = (F% WI, F%bl_)) - m (ZL@ (x), Fu (x))H dx 
s 

(3.5) 
0 " 

Applying the Cauchy-Buniakowski inequality and the inequalities (3. l), (3.2). (3.4) we 
obtain m m m 

I( 
(,(‘) (2) Pu (x))~ rlz Q 

I t\^ 
I] .@) (z) ljH2 dx “’ 

J ii 
Ij Fu (1) llH2 dx “’ 

b ‘0 “0 
,<NI~uI)&~,(~.~) 

1 ( Fskuo, F”‘u& I G II V”Qo IIf{ [I V”‘ut) jIH < NC’, II u II&,. (3.7) 

after which (3.3) follows from (3.5) - (3.7) at once, and this proves the lemma. 

For the operators V, and F, defined by (1.8) we have an assertion stronger than 
(3.2). 

Lemma 3.3. The operator lJo = FoVo-l * is isometric. This follows from the 
identity 

(vo% U)H = ()% ll”H = s ( A,u )W = I/ F,u ll”H, u E D (V,) 
S 

after setting Vol/~ u = 2,. 

When investigating the generalized solutions of the boundary value problem (1.5). 
(1.6), we must construct vector functions which belong to Ho and satisfy the boundary 
conditions (1.6). This can be done using the following boundary value problem : 

21(J) (Lx) + vv (LIZ) = 0 (3.8) 

v (0) = aa, v(2) (0) = Uo@), v (c0) = 0 

Its solution has the form 
m 

u (5) = 2 (b, cos fix + b; sin rkx) e-‘k” 8, (3.9) 
k=l 

h, = @o, WH, b; = - 1/2 y; ($, 6,)~ 

where 8, are the eigenvectors and kk(V) = 4yk4 are the eigenvalues of the operator 
v. We also have 

II v I&; = y&~auo/& + l!!_ppup~~“H +3cg(v”uo, ji-‘I:up)H (3.10) 

Thus, Eq. (3.9) defines the solution v E Ho’ (by virtue of Lemma 3.2 also v E H,) 
provided that u. E H”is and ~~(2) E H-S. Further, from (3.10) follows the inequality 

11 u /ia,; > @ / 16 (3 1) T/‘%, $I + 2 II T/‘-‘” @ l/id (3.11) 
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Relations (3.10) and (3.11) together yield the following lemma. 
Lemma 3.4. For the problem (3.8) to have a solution belonging to Ho’, it is 

necessary and sufficient that u,, E FJa and n,,(z) E H-‘/B. 

We shall now explain in what sense the generalized solution of (3.8) satisfies the 

boundary conditions. From Lemma 3.1 it follows that the condition 21 (0) = u. holds 
in the sense of convergence in H ‘1~. From the lemma that follows we deduce that the 
condition ZI@) (0) = u,(2) holds in the sense of convergence in H-‘/R. 

Lemma 3.5. The generalized solution of the problem (3.8) has an nth general- 

ized derivative u(“) E C (HP), fJ = (3 - 2n) / 8 (n = O.I...). 
Proof. When the series (3.9) contains a finite number of terms, the assertion is obvi- 

ous. The passage to the general case can be made with the help of the Banach-Steinhaus 

theorem, using the estimate 11 U(n)]\ Hp <C, I( v (]no,derived from the Parseval equation 
and the expression (3.9) for the generalizea solution. 

Lemma 3.6. The generalized solution of the problem (1.5), (1.6) has an nth 
generalized derivative z&) E C (Ha), p = (3 - 2n) / 8 (n = 0, 1, 2, 3). 

This lemma is proved in exactly the same manner as Lemma 3.5 (also see the proof 

of Lemma 2.2 in @3]). 

4, Let us formulate the theorems of existence of solutions of the boundary value 

problems (1.5).(1.6) and (1.5),(1.7). 
Theorem 4.1. For the problem (1.5), (1.6) to have a unique solution in the 

space Ho , it is necessary and sufficient that us E Hl!g and u0c2) E H+. 
Proof. Let u be a generalized solution of the problem (1.5), (1.6). By the Riesz 

theorem and by Lemma 3.2 there exists a vector function u E H,’ satisfying the iden- 

tity 
(4.1) 

which follows from the definition (2.5). Here ZI is the generalized solution of the prob- 
lem (3.8). The necessity now follows from Lemma 3.4. To prove the sufficiency, we 

shall seek the generalized solution in the form u = v + w, where v is the generalized 
solution of the boundary value problem (3.8). Then by (2.5) the vector function w must 

satisfy the following integral identity : 

(w, I#)& = - 2 ~(F’“u”‘(z), F”@) (z))&, 11) E H, (4.2) 
0 

and the condition w (0) = 0. The right-hand side of (4.2) defines a functional, conti- 

nuous in 11, on the subspace H,,, = {$ E H,, II, (0) = 0) , therefore the vector func- 
tion w E H, exists and is unique. 

Theorem 4. 2. For the problem (1.5). (1.7) to have a unique solution in the space 
Ho, it is necessary and sufficient that n0 E H”fo and us(l) E H’I8. 

The proof of this theorem is analogous to that of Theorem 4.1 and is somewhat sim- 
pler, since it is based on Lemmas 3.1 and 3.2 only, with no need to use further proper- 

ties of (1.5). 

5. Using the results of pl] we shall prove the double completeness of the Jordan 
arrays in (2.7), assuming that the operators T/’ and F are defined by the following 

relations : 
Vcp=a ‘$, cp Ill=+1 = 0 = 2 lUEfl (5.1) 
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Fv=-P g2, cp lu=f1= 0, a, P > 0, yEs = I-1, I] (5.2) 

In particular we can reduce to Eq. (1.5) with the operators V and F of the type (5.1) 

and (5. Z), the problem of bending an orthotropic plate clamped rigidly along two oppo- 
site sides and the plane problem of the theory of elasticity for an orthotropic material. 
The case a = @ = 1 corresponds to an isotropic material. 

Following @l], we make the following substitution in (2.7) : 

$ = J+p, p-1 = j(, (5.3) 

and pass to the associate equation 

L (h) + = (A21 + 2hB + C) I# = 0 

(C = V-l, B = C”zFC’,‘z, I# E H) 

It is clear that c and B are positive, completely continuous operators. We say that the 

sequence gkO, gkl, . . . . qITP_i, where 

L (a,) $kO = 09 L @k) 9kj + 

forms a Jordan array of the bundle L (A) corresponding to the eigenvalue h,. We de- 

note by {$k} the set of all eigenvectors and adjoint vectors of the bundle L (a). Fol- 
lowing l21] we say that the system of Jordan arrays {gk} is doubly complete if for any 
two functions f, g E H and 6 > 0 such n and such constants C,(n) can be found that 

the following inequalities hold simultaneously : 

II f _ i. h~lcli”‘v-‘l’ 

k=l 
q’kIj <b II&?-- &$‘y;,( <s (5*4) 

H H 

According to Krein ( [21], theorem 2.1, p. 297) the double completeness occurs each 
time when lim n2h, (C) = 0, where li,, (c) are the eigenvalues of the operator 
C. Since C = V-1, we have h,(C) = k,-‘(v). The asymptotics of the eigenvalues 
of the boundary value problem p4] for the operator V defined by the relations (5.1) 

has the form h, (v) = (2s~~)~ [I + 0 (1 / n)l, consequently the condition given above 
holds. 

From the double completeness which we have proved follow the inequalities (5.4) or, 
after making the substitutions (5.3), the inequalities 

Here {(Pa} is the complete system of eigenvectors and adjoint vectors of the bundle 

r (P). 

6. Let us consider the problem of completeness of the elementary solutions (2.5) in 
the space of solutions of (1.5) belonging to HO. We denote this space by H,, and prove 
the following theorem. 

Theorem 6.1. For any function u E H,, and a > 0 a function 

Ull = Cl(+z, (x) + . . . + Cn(%x (x) 

can be found such, that 
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lb - %JlH,< E 

Proof. We use Theorem 4.1 to assert that the following inequality holds: 

ju - U,IIHO< 01 [I/&l - &z(O) llH% + (I q' - q'(o) II,-1% I 

Further, setting in (5.5) f = ~0~‘) and g = p,“uo we find 

11 u,, - u, (0) (jIIl/2 < 6, I/ $’ - .&!’ (O) lb < ’ 

From the inequality (2.4) we have 

11 u,, - u, (0) ((N~‘~ < ma I( ‘0 - “,I (O) I(H’ 2 < 026 

)I up’ - up (0) lIfI_‘,‘. < w, /) q’ - q (0) I/H < 026 

(02 = h:“(V) 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

Inserting (6.4) into (6.2) and setting 20,0,6 = E, we obtain the inequality (6.1). 

From Theorem 4.1 follow, in particular, the solvability of an infinite system obtained 
by minimizing the functional n 

I 

2 

Ii 2 
U- cpn, (x) 

k=l HO 

over the constants Ck(n), the convergence of the method of reduction and the converg- 

ence of the approximate solutions’ u, , with IZ 3 00 , to the generalized solution of the 
biharmonic equation. It can be shown that the infinite system obtained in this way is 
equivalent to the system given in [3, 43 obtained on the basis of the asymptotic method 

and the Lagrange’s variational principle. 

7, In conclusion we consider a semi-strip the elastic properties of which vary across 

its thickness. In this case the operators V and F become 

(7.1) 

Here p = p (!I) is the shear modulus and v = v (~1) the Poisson’s ratio, respectively. 
Since IL > 0 and 0 < v < 1/z, the functions p, p1 and pa can be assumed positive 
on the segment ~1 E [-I, I]. For the space H we use L, (S) with weight p. We 
assume that the functions p and 11~ are twice continuously differentiable and p1 is con- 
tinuously differentiable on the segment 71 F l-1, I]. In the present case the operator 
F is not, generally speaking, positive, but it can be shown that it is bounded from below, 

i. e. 
Vu, r*)~r > k (II, U>JJ 

The substitution p -f p + n in the bundle (2.7) yields another bundle of the same 

type in which F --f F + aI and V -> V + 2aF + n21. Clearly when n are large 
and positive, we arrive back at an operator equation of the form (2.7) with positive F 
and li. Under these conditions the operators V-l and F-l satisfy all conditions neces- 

sary for the application of the basic theorem of Krein r’l], therefore the conclusions of 
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Theorem 6.1 remain valid for the problems (‘7.1). 
The authors thank I. I. Vorovich for useful comments. 
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The algebraic system of equations of infinite order studied here occurs during 
the solution of the problem of the theory of elasticity concerning a symmetri- 

cally loaded semi-strip clamped at the one end. The system is solved using the 
iteration method. First, out of the matrix of the system a sub-matrix is selected, 
characterizing the behavior of the solution at large values of the index of the 
unknown. It is proved and confirmed by concrete examples, that the solution of 
the basic system differs little from the solution of a simplified system. An asym- 
ptotic expansion is obtained for the solution of the simplified system for the 
large values of the index of the unknown and an approximate method is given 
for the determination of its coefficients. 

An infinite system of algebraic equations for a semi-strip with stress-free 
longitudinal edges and displacements specified at its end was discussed in [l] 
where it was proved that the system is completely regular. Earlier [Z] the beha- 
vior of the solution at large values of the index of the unknown was explained 


